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 The observation of operating parameters for the single-phase or multi-
phase flows of oil and gas pipelines always plays an important role and 
prerequisite in daily operation. The inlet and outlet parameters of the 
pipeline such as pressure and temperature will greatly affect the 
efficiency of the production and transportation process of fields. These 
parameters are very important. It must be required to observe 
carefully and strictly. In fact, pressure and temperature signal gauges 
will always be set up at the inlet and outlet of the pipeline for 
continuously variable transmission of the signal to the central control 
room, then the operator can observe regularly. Alarms will be 
triggered when the signal goes out of the setting operation area. 
However, the operational parameters transmitted from this gauge are 
only available after the actual fluid flow passes through the pipeline. 
This will limit when the operator needs to apply calculation methods 
to pre-predict the flow regime, and operating parameters of the fluid 
in the pipeline when fluid flows has not passed through the pipeline. 
From that approach, the paper presents the result of research on the 
application of machine learning algorithms (ML) to build models to 
predict operating conditions of three-phase flows in the pipeline at Hai 
Thach- Moc Tinh field based on input parameters such as the open of 
wellhead flow control valve of wells located in wellhead platform 
WHP-MT1, WHP-HT1, and the commercial gas volume. The results of 
the research show that the ML calculation method gives the result 
which is only +/-2 barg/20C difference compared to the field data 
obtained from pressure (HT1-PT-0911) and temperature (HT1-TI-
0911) signals set up at the outlet of the transportation pipeline at the 
Hai Thach-Moc Tinh field.  
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1. Overview of the prediction of operating 
conditions (Pressure/Temperature) of the 
transportation pipeline of the Hai Thach-
Moc Tinh field 

The fluid transported in the pipeline has 
different flow structures, depending on factors 
such as fluid component, flow rate of 
transportation as well as liquid-gas ratio, 
diameter, and material of the pipeline, etc. In 
general, the flow regime can be divided into two 
main types based on the geometrical structure of 
the pipeline such as the flow regime in pipeline by 
horizontal and vertical directions. There are many 
names given to different flow regimes but in 
general, there are four regimes: slug flow, laminar 
flow, annular flow, and dispersed bubble flow. In 
general, it is difficult to determine exactly which 
flow regime is taking place in the pipe section 
Based on that it is possible to select an 
appropriate experimental coefficient for flow 
applying to the equation for calculating the 
pressure drop due to friction. Calculations are 
often repeated with different flow regimes. From 
that, it can be chosen the most suitable flow 
regime which has the smallest error. It takes time 
consumption, and the calculation error is quite 
high due to the flow regime chosen not being 
suitable. Therefore, calculation using simulation 
software is always the best choice. However, it is 
still difficult to determine the input parameters 
for the Hysys model (temperature, pressure, input 
flow component of the fluid) because of 
estimation by manual calculation from the 
characteristic curve and fluid component of each 
well. In some cases, especially when the liquid-gas 
ratio of the fluid flow increases, the calculation by 
Hysys software also gives an error "Not solved" 
because the thermodynamic model given by the 
user in Hysys does not calculate for this pipe 
section. Therefore, the Machine Learning (ML) 
algorithm has been studied based on historical 
data for the opening of choke size of wells, the gas 
flow rate output to get the pressure and 
temperature parameters at the 20th kilometer of 
the Hai Thach-Moc Tinh (HT-MT) pipeline and 
ignore the basic calculation steps above. 

Today, there are many research works in the 
world applied to Machine Learning algorithms for 
pipelines and calculating pressure drop. The 

research of "Gas Gathering System Modeling the 
Pipeline Pressure Loss Match" carried out by 
authors R.G MCneil and D.R Lillico (McNeil and 
Lillico, 2005) is the most similar. In this research, 
the authors built up a mathematical model to 
calculate the pressure drop of the gas-gathering 
system. The authors created a gas-gathering 
system model that can calculate the backpressure 
with high accuracy and repeatability. It is able to 
predict future operating conditions when 
changing the operating information of wells or in 
case of adding new wells. The result of this 
research showed that with this mathematical 
model, it did not need to apply the complicated 
traditional pressure drop calculation methods. 
This model requires only the modeller to have a 
reasonable approach to research problems. The 
imperative approach starts with three rules: (1) 
divide the problem into manageable parts, (2) 
choose an appropriate pressure drop correlation 
and trust it without using any correction factor, 
and (3) always take a field trip to resolve the 
difference between the pipeline pressure drop by 
measuring and calculating. 

Jane Ozi and Ayoade Kuye (2020) 
investigated pressure loss to predict the 
operational capability of pipeline systems, 
particularly for cross-border gas transportation 
pipelines. When pressure loss increases and 
reaches a point where the pressure drop in the 
pipeline exceeds the specified operating pressure 
limit or falls below the required minimum 
delivery pressure, it can impact the system’s 
performance negatively. 

2. Methods used to predict the operating 
conditions of transportation pipelines 

2.1. Traditional calculation method 

For single-phase flow in a pipeline, the 
pressure drop over a distance L is represented by 
the thermodynamic equilibrium equation: 

∫ 𝑉𝑑𝑃 +
𝑔

𝑔𝑐
∆𝑋 +

(∆𝑣)2

2𝑔𝑐
= −𝑊𝑓 − 𝑊 (1) 

Where V is the volume of fluid; P is the 
pressure of fluid; ∆X is the variation in height of 
fluid flow; ∆v is the variation velocity of fluid flow; 
W_f is the energy loss due to friction; W is the 
energy of the system; g is the acceleration due to 
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gravity (9.81 m/s2); gc is the mass/force 
conversion coefficient. 

Formula (1), representing the friction force in 
a pipe length dL is proportional to the contact 
surface of the fluid, relative to the square of the 
velocity and the density of the fluid. When adding 
the friction coefficient f, the equation (1) is given 
as: 

Frictional resistance = (f)(dL)(πd)(v2/2gc)( ρ)  (2) 

Where L is the length of pipe (m); d is the 
inner diameter (m); v is the velocity of the fluid 
(m/s); ρ is the density of the fluid (kg/m3); f is the 
size coefficient of pipe.  

The mass of liquid in the pipe is the length dL 
multiplied by the cross-section of the pipe and the 
density of fluid. All work losses due to friction are 
calculated by the frictional resistance passing 
through the length dL. Combining the above 
concepts into equation (2) gives dWf. 

𝑑𝑊𝑓 =
(𝑓)(𝑑𝐿)(𝜋𝑑) (

𝑣2

2𝑔𝑐
) ( 𝜌)𝑑𝐿

(
𝜋

4
)(𝑑2)(𝜌)(𝑑𝐿)

 (3) 

Simplify: 

𝑑𝑊𝑓 =
2𝑓𝑣2𝑑𝐿

𝑔𝑐𝑑
 (4) 

Integrating from 0 to Wf and 0 to L, we get: 
 

𝑊𝑓 =
2𝑓𝐿𝑣2

𝑔𝑐𝑑
 (5) 

Equation (5) is called the Fanning friction 
coefficient equation. Other forms of the equation 
have been published differently only in the value 
correction factor “f”. 

Combining equations (1) and (5) gives: 

∫ 𝑉𝑑𝑃 +
𝑔

𝑔𝑐
∆ 𝑋 +

(∆𝑣)2

2𝑔𝑐

= −
2𝑓𝐿𝑣2

𝑔𝑐𝑑
− 𝑊 

(6) 

Equation (6) is also defined as the 
fundamental equation of flow or Bernoulli's 
equation. 

With the pipe section without work used; W 
is removed from equations (6) to solve the 
problem between the pressure drop and flow 
rate, to get equation (7): 

∫ 𝑉𝑑𝑃 +
𝑔

𝑔𝑐
∆ 𝑋 +

(∆𝑣)2

2𝑔𝑐
= −

2𝑓𝐿𝑣2

𝑔𝑐𝑑
 (7) 

The friction coefficient f depends on the 
roughness and diameter of the pipe, and the 
characteristics of fluid. Normally, the f-factor will 
be looked up according to the Moody's chart 
based on the Reynolds coefficient of the fluid 
(Campbell, 1992). 

Normally for three-phase flows in pipeline 
transportation methods used to calculate the 
pressure drop without the help of computer tools 
will be quite complicated. In the Hai Thach - Moc 
Tinh field, this method is not usually used because 
of the large size of the pipeline (12 inches) and 
giving significant errors when applying Eaton's 
empirical equation for pipeline three-phase flow 
(because this method applies only to pipes having 
diameter less than 50 mm) or Beggs & Brill (<1.5 
inches). The calculation results in a deficiency of 
liquid hold up compared to the reality obtained 
when applying Dukler's correction coefficient 
(Campbell, 1992). Therefore, this traditional 
method is not applied to calculate the pressure 
loss for the gathering pipeline at the Hai Thach - 
Moc Tinh field. 

2.2. Calculation method by using simulation 
software 

Currently, there are many simulation 
software applying these calculation methods and 
it allows the users to forecast future operating 
conditions such as HYSYS, OLGA, MSI,... In 
Vietnam, MSI software is available applied at the 
Nam Con Son pipeline (NCSP) taking the "what if" 
tool can predict the “settle out pressure”, the 
“landing pressure”. Based on the fact that 
operation team can adjust the inlet flow to gas 
owners. This software supports also NCSP to 
predict the "settle out pressure", and "landing 
pressure" when PVGas - the gas buyer announces 
an expected gas demand about a decrease or an 
increase in the next few hours/day. It helps the 
operation team to make requirements of 
appropriate input flow “production Guidance” for 
gas owners who are bringing gas into the NCSP 
pipeline system. The “what if” tool is also used in 
predicting the results (settle out pressure) of 
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special operating situations such as: increasing or 
decreasing flow rate, pigging, and when 
stopping/restarting operation of offshore 
platforms. However, the licensing cost for this MSI 
software is expensive.  

With the calculation of temperature and 
pressure drop using the Hysys model, in some 
cases of high Condensate-Gas Ratio (CGR), we will 
obtain results which do not suitable after many 
loops (Figure 1). On the other hand, compared 
with the database of the field, pressure drop 
calculation using the Hysys model gives also 
results of output pressure which is lower than 
reality itself (over the predicting pressure loss) 
because the thermodynamic model Peng- 
Robinson or SRK in Hysys uses the Beggs & Brill 
empirical equation to calculate the pressure loss. 
However, this equation is not suitable for pipes 
having a greater diameter (12 inches) of the Hai 
Thach-Moc Tinh pipeline. Specifically, with a gas 

flow rate of 4.0 million m3/day from the wells at 
the WHP-MT platform, Hysys gives the results in 
pressure/temperature loss of 40barg/340C 
respectively. It is higher than 34barg/ 280C 
comparing the reality measured by pressure 
gauges HT1-PT0911 and temperature HT1-
TI0911 located on the pipeline.  

2.3. Research method using AI to predict the 
operating conditions of the pipeline 

There are different types of machine learning 
(ML) algorithm models including linear and non-
linear regression models, decision tree models, 
support vector machines, and artificial neural 
network. Some machine learning models are very 
flexible in architectural design, allowing unlimited 
model selection. Besides, each model has a large 
number of hyperparameters that can be 
optimized to maximize model performance. 
Therefore, model selection together with 

 

Figure 1. Hysys error message when pressure loss can not be calculated due to failure of solving 
thermodynamic equation with Begg and Brills calibration coefficient. 
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hyperparameter selection has become a difficult 
task in optimizing the use of machine learning 
models to solve certain problems. This section 
aims to estimate the basement theory of major 
machine learning models that have the potential 
to be applied to the current objective. In addition, 
the advantage and disadvantage of each model 
are also clarified, so that different models can be 
combined to build the most efficient model 
possible to solve the current problem. In 
particular, it needs a model covering the declining 
trend of the data (both gas condensate ratio and 
wellhead pressure) and predicting the outlet 
future dataset that is outside of the historical data 
zone. In addition, models that can perfectly adapt 
to small amounts of gas condensate ratio and 
small amounts of fluid components are required.  

Linear regression may be the simplest 
machine learning model because it searches only 
to optimize the weights wi concerning linearly 
related between the objective y of each sample 
and the corresponding characteristics of xi 
mentioned by Montgomery et al. (2021): 

𝑦 = 𝑤0 + ∑ 𝑤𝑖𝑥𝑖

𝑁

𝑘=1

 

 
(8) 

Where N is the number of features and w0 is 
the intersection coefficient. By training the linear 
regression model, machine learning searches for 
the wi component with i valeur varies from 0 to N 
to minimize the mean square error (applied all 
over samples of the dataset) between the target 
calculated by using the equation above and the 
measurable objective. A part of extending the 
linear regression model is the non-linear 
regression model, which also takes into account 
the nonlinear factors of the features such as 
square, cube, product between features, and so 
on. This corresponds to a linear regression model 
in which new features are generated from the 
basic properties through basic mathematical 
equations. In the case of small datasets, the 
parameter should be added to the linear 
regression model to avoid the problem of 
overfitting. To clarify this point, a pseudo example 
of a dataset having only two data points is 
considered. This dataset can be perfectly matched 
by a linear regression model going directly 
through these two points. However, this data-

fitted model is not optimal for predicting a third 
data point that is not on the path through the 
original two points. Obviously, it is necessary to 
build a model that does not take into account for 
fitting the first two points perfectly but it can 
predict better than the third data point. Using the 
penalty parameter in the linear regression model 
to avoid the problem of overfitting is the main 
idea of the Ridge model (McDonald, 2009). In this 
model, we can set a hyperparameter (α parameter 
in the famous Scikit learning package) that 
controls the slope of the regression hyperplane, 
i.e. It controls the sensitivity of the target to 
properties variation. The higher the α parameter, 
the greater the sensitivity of the target varies to 
the characteristics and opposite. Similarly, Lasso 
or Elastic-Net models consider the regularization 
parameter to minimize the number of non-zero 
weights (Zhao and Yu, 2006). However, Lasso and 
Elastic-Net models which are suitable for 
reducing the number of features may not be a 
good choice for this problem having only three 
properties (wellhead pressure, wellhead 
temperature, and opening valve of production 
process) (Jia and Yu, 2010). 

By training the artificial neural network, 
machine learning will find ways to optimize the 
weights and deviations to minimize the error 
between the predicted target and the measuring 
target. That error is called the loss function. For an 
actual regression problem, a typical loss function 
might be the mean squared error between the 
predicted gas condensate ratio and the actual 
measured gas condensate ratio. Mathematical 
algorithms for minimizing the loss function are 
called optimizers based on the random gradient 
reduction technique. These techniques aim to find 
out, in a multi-step process, the optimal direction 
in a multi-dimensional space in which the 
attenuation of the loss function is greatest. Then, 
the weights and deviation of the network are 
modified step by step to reduce the loss function 
in that optimal direction. The learning rate and 
momentum parameters are considered in such 
modification to stabilize the attenuation value of 
the loss function towards its overall minimum. 
Such modifications are made by starting from the 
last hidden layer back to the first hidden layer. 
This opposite change of weight and bias is called 
the backpropagation algorithm. By optimizing the 
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artificial neural network model, the network 
architecture is searched for optimization 
(optimizing the number of hidden layers and the 
number of hidden nodes in each hidden layer), 
optimization of the choice of functions activation, 
loss function, and optimization associating with 
related learning ratio. Randomly disabling a 
certain number of hidden nodes is also a wide 
technique applied in a real condition to optimize 
the performance of an artificial neural network 
model. Such optimization is controlled by 
validating the trained model with the dataset that 
has not been used during the training process of 
the model. This cross-validation step, just like in 
any other machine learning model, is very 
important to avoid the problem of overfitting that 
causes the model to overfit the training dataset 
and it can work only on this dataset. A surface 
artificial neural network model having a small 
number of hidden nodes would be an appropriate 
choice for modelling the dataset of gas condensate 
ratios due to the small amount of data. However, 
it is not possible to apply the artificial neural 
network model to the fluid component dataset 
because the amount of data is very small while 
many features belong to this dataset. 

The decision tree model is based on a fairly 
simple concept for data classification and 
regression. It uses conditions based on features to 
split the original dataset into categories. For a 
regression problem, the predicted value for each 
category is the mean of that category taken from 
the training dataset. For example, the condensate 
gas ratio dataset can be divided into two subsets: 
one of which having an opening valve is greater 
than 40% and the other having a discharge 
opening valve is less than 40%. Then each subset 
can be divided into two smaller subsets based on 
the wellhead temperature and the wellhead 
pressure respectively. A feature can be used 
multiple times to subdivide a data set. Finally, 
each subset corresponds to a leaf of a decision 
tree, where the regression value is the mean of the 
corresponding subset. By training the decision 
tree, machine learning will find a way to optimize 
the partition thresholds in order to minimize the 
error between the predicted target and the 
measured target. The structure of the decision 
tree must also be simplified to avoid the 
overfitting. This can be solved by considering 

regulatory parameters such as the minimum 
number of data points in each leaf of the 
maximum number of branches coming from the 
root to the furthest leaf (maximum depth of tree). 
A single decision tree may not work well on a 
complex dataset. However, a set of many decision 
trees can become a very powerful machine-
learning model. The random forest model is an 
example of the decision tree model working very 
well on different types of tabular data. This model 
considers random starter datasets built from the 
original dataset and selects random features from 
each starter dataset to build and optimize 
multiple random decision trees. The final result of 
the model is the average value of the results 
obtained from the trees. Extra trees are another 
high-performance synthetic decision tree model 
based on a different concept from the random 
forest model. It considers the random split value 
at each decision node to build the tree. This 
technique helps to reduce the variance and 
increase the deviation of the model. This method 
works very quickly and it can run better than the 
random forest model or the others coming from 
well-known machine learning models in some 
applications. The motivation tree model can be 
considered as an extension of the random tree 
model. This modelling layer does not build trees 
at random, but each new tree is built by learning 
from the previous tree's errors. The Adaboost 
model could be considered the simplest 
motivation tree model considering the trees 
having only two leaves. The models having 
progressive amplitude consider more complex 
tree structures to the depth and have more leaves. 
The XGBoost model is a synthetic reinforcement 
tree model that had won in plural machine 
learning competitions concerning tabular dataset 
development. This model considers the specified 
parameters to remove and simplify the tree 
structure in order to avoid the problem of 
overfitting. It is affirmed better than other 
machine learning models such as support vector 
machines or artificial neural networks in many 
industrial applications. 

The support vector machine model uses a 
hyperplane to divide the dataset into 
subcategories. It uses a core function to transform 
the original dataset into a space where the 
hyperplane exists. Comparing this model with the 



 Thanh Tuan Nguyen et al./Journal of Mining and Earth Sciences 65(4), 31 - 41 37 

artificial neural network model and tree model for 
different tabular datasets can be found in the 
research of Nguyen-Sy et al. (2020) and Nguyen-
Sy et al. (2021). In practical experience, artificial 
neural networks and high-level tree models often 
work better than support vector machine models. 

3. Results and discussion 

In this section, the research is carried out by 
optimizing and comparing machine learning 
models for hydrodynamic datasets of internal 
gathering pipeline three-phase flows at the Hai 
Thach-Moc Tinh field to solve the current 
problem of temperature and pressure prediction. 
To evaluate the model's performance based on 
predictive data, 20% of the total data points are 
kept to test the trained model. The rest of the data 
is used for training. To do this, the train_test_split 
function provided by the Scikit learning package 
was applied. 

The root mean square error index (RMSE) 
and the mean absolute error (MAE) were 
calculated separately for the training and testing 
datasets. These two parameters will be used to 
compare machine learning models to evaluate 
predictive performance between models. 

The linear regression model is the first model 
selected to test the prediction of temperature and 

pressure conditions of pipelines from operating 
parameters of production wells. The temperature 
and pressure results are evaluated on the training 
and testing dataset. It can be found that the linear 
regression model, although it is a simple model, 
works quite well. Regarding temperature 
parameters, the RMSE and MAE indexes are at 
2.09 and 1.50C for the training set; 2.01 and 1.470C 
for the test set. Regarding pressure parameters, 
RMSE and MAE are at 0.75 and 0.59 barg for the 
training set; 0.73 and 0.56 barg for the test set 
(Figure 2). 

The Support Vector Machine is the next 
artificial intelligence model to be tested. The 
hyperparameters of the model are optimized by 
sensitivity analysis. Regarding temperature 
parameters, the RMSE and MAE indexes are at 
1.41 and 0.960C for the training set; 1.73 and 
1.120C for the test set. Regarding pressure 
parameters, RMSE and MAE are at 0.6 and 0.51 
barg for the training set; 0.69 and 0.55 barg for the 
test set (Figure 3). 

Next, a more complex artificial intelligence 
model is tested. The authors use an artificial 
neural network model with two hidden layers of 

 
Figure 2. Comparison between predicted temperature and pressure with measured values for 

training and test subsets by linear regression model. 
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16 nodes. The hyperparameters of the model 
are optimized by sensitivity analysis. Regarding 
temperature parameters, the RMSE and MAE 
indexes are at 1.79 and 1.270C for the training set; 
and 1.76 and 1.310C for the test set. Regarding the 

pressure parameters, the RMSE and MAE indexes 
are at 0.6 and 0.45 barg for the training set; 1.01 
and 0.65 barg for the test set (Figure 4). 

The XGBoost model is also considered to 
solve the current problem because it has won 

 
Figure 3. Comparison between predicted temperature and pressure with measured values for training and 

test subsets using the Support Vector Machine model. 

 
Figure 4. Comparison of temperature parameters and predicted pressure with measured values for 

training and test subsets using an artificial neural network model. 
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consecutively in many machine learning 
competitions relating to tabular dataset 
development. The model's learning_rate 
superparameter is optimized by performing 
sensitivity analysis. Regarding temperature 
parameters, the RMSE and MAE indexes are at 0.3 
and 0.210C for the training set; 1.2 and 0.73 0C for 
the test set. Regarding the pressure parameters, 
the RMSE and MAE indexes are at 0.3 and 0.22 
barg for the training set; 0.57 and 0.41 barg for the 
test set (Figure 5). 

The two metrics RMSE and MAE are 
compared to evaluate the predictive performance 
of machine learning models. Then different 
models will be tested based on aggregate results 
of these two metrics. The comparison results are 
shown in Table 1 and Figure 6. From this 
comparison, it can be found that the XGBoost 

model gives the best prediction score and is 
selected to apply to the production operation 
activities in the field. 

4. Evaluate the prediction results of machine 
learning tool 

In order to evaluate the accuracy of the 
machine learning tool in predicting the 
temperature and pressure of the internal 
gathering pipeline at the Hai Thach-Moc Tinh field 
during the operation production the authors 
observed and compared the predicted results 
obtained from the machine learning model to the 
traditional simulation results (the method 
combining the LINEST regression analysis tool 
from Microsoft Excel with the Hysys simulation 
software) and the actual results measured from 
the pipeline. 

 
Figure 5. Comparison between predicting pressure and temperature with measured values for training and 

test subsets using XGBoost model. 

Table 1. Comparison of predictive performance between models. 

Models 
Teperature Pressure 

RMSE (0C) MAE (0C) RMSE (barg) MAE (barg) 

Linear regression 2.01 1.47 0.84 0.64 

Support Vector Machine 1.73 1.12 0.69 0.55 

Artificial Neural Network 1.76 1.31 1.01 0.65 

XGBoost 1.20 0.73 0.57 0.41 
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Based on this observation, the authors found 
that the machine learning model gives prediction 
results that are quite accurate with the actual 
parameters of temperature and pressure of the 
internal gathering pipeline at the Hai Thach-Moc 
Tinh field. At the same time, the machine learning 
model gives more accurate predictions than 
traditional simulation methods (Table 2). 

With algorithms built from Machine Learning 
tools, production engineers or operators working 
at the central control room of the PQP-HT 
platform can predict the pressure at the 20th 
kilometer of the MT-HT pipeline easily. even if 
Hysys software is not available. The ML algorithm 
gives accurate results that help to save the 
working time for the production team during the 
production process.  

For daily operations, the ML algorithm also 
supports well to operation teams because of the 

accurate and convenient results obtained from 
the model. In cases of the gas buyer requires a 
sudden flow rate reduction, the use of the ML 
algorithm will give quick results of 
pressure/temperature prediction of the Hai 
Thach-Moc Tinh pipeline. That helps the 
operator decide to check and select opening or 
stopping any production wells in order to keep 
the operating parameters of the Hai Thach-Moc 
Tinh pipeline within the allowable operating 
limits while reducing the total gas flow based on 
the request of the gas buyer. Especially, in the 
rainy season when the gas demand is low, the 
PQP_HT platform is often maintained at the 
lowest possible production limit or stopped 
operating activities to prevent the NCSP's 
pressure system from over 130 barg when the 
output gas consumption is reduced. In this case, 
the application of ML will help the operators to 

 

Figure 6. Comparison of predictive performance between models. 

Table 2. Comparison of predictive performance between models. 

N° 

Temperature of the Hai Thach-Moc Tinh 
pipeline  

Pressure of the Hai Thach-Moc Tinh pipeline 

Field 
(0C) 

Machine learning 
model 

Traditional 
simulation 
methode Field 

(barg) 

Machine learning 
model 

Traditional 
simulation 
methode 

Predicting 
results 

(0C) 
Errors 

Predicting 
results 

(0C) 
Errors 

Predicting 
results 
(barg) 

Errors 
Predicting 

results 
(barg) 

Errors 

1 59.5 59.9 0.4 53.5 6 53.1 52.7 0.4 49.1 4 
2 56.7 56.1 -0.6 51.3 5.4 52.2 52.55 -0.35 47.6 4.6 
3 36.8 36.0 -0.8 40.1 -3.3 50.9 50.46 0.44 44.8 6.1 
4 36.2 36.7 0.5 39.4 -3.2 50.7 50.31 0.39 44.2 6.5 
5 50.5 49.9 -0.6 45.2 5.3 53.6 53.8 -0.2 56.6 -3.0 
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select promptly the appropriate production 
wells while still keeping the operating 
conditions of the Hai Thach-Moc Tinh pipeline 
within safe operating limits without shutdown 
of production operations. 

5. Conclusions 

The application of the ML algorithm for 
gathering pipeline three-phase flows at the Hai 
Thach-Moc Tinh field has solved the difficulties in 
time and errors of the current calculation method. 
The ML algorithm gave accurate prediction 
results quickly and conveniently. That helps the 
operator be active in selecting the suitable 
optimal well opening mode for each gas flow rate 
level based on the requirements of the buyers.  

Predicting the operating conditions of the 
pipeline is important to the success of daily 
operations, especially the plan of production and 
preparation of spare chemicals. Today, there are 
many simulation softwares in the world to 
manage pipeline operations. However, the 
licensing cost of these softwares is expensive and 
it may not be available due to geopolitical reasons. 
In this case, ML algorithms can be applied that will 
help to save human costs (do the calculation 
based on the traditional assumption/loop method 
until the minimum errors are given) or the cost of 
licensing simulation software. 
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